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Nano-Zagreb Index and Multiplicative Nano-Zagreb
Index of Some Graph Operations

Akbar Jahanbani and Hajar Shooshtary

Abstract—Let G be a graph with vertex setV (G) and edge set
E(G). The Nano-Zagreb and multiplicative Nano-Zagreb indices
of G are N Z(G) = ∑uv∈E(G)(d

2(u) − d2(v)) and N ∗Z(G) =

∏uv∈E(G)(d
2(u)− d2(v)), respectively, whered(v) is the degree

of the vertex v. In this paper, we define two types of Zagreb
indices based on degrees of vertices. Also the Nano-Zagreb index
and multiplicative Nano-Zagreb index of the Cartesian product,
symmetric difference, composition and disjunction of graphs are
computed.

Index Terms—Graph operations, Nano-Zagreb index, Multi-
plicative Nano-Zagreb index, Zagreb index.

I. I NTRODUCTION

T HROUGHOUT this paper, all graphs are simple. LetG be
a (molecular) graph with vertex setV (G) = {v1,v2, ...,vn}

and edge setE(G). Denote byuv the edge ofG, connecting
the verticesu and v. For any vertexu of G, the degree of
u is denoted byd(u). We consider only simple connected
graphs, i.e. connected graphs without loops and multiple
edges. SupposeΣ denotes the class of all graphs, then a func-
tion Λ : Σ → R+ is called a topological index ifG ∼= H implies
Λ(G)=Λ(H). Usage of topological indices in chemistry began
in 1947 when chemist Harold Wiener developed the most
widely known topological descriptor, theWiener index, and
used it to determine physical properties of types of alkanes
known as paraffin. TheCartesian product G1×G2 of graphs
G1 and G2 has the vertex setV (G1×G2) = V (G1)×V (G2)
and(a,x)(b,y) is an edge ofG1×G2 if a = b andxy ∈ E(G1),
or ab ∈ E(G1) andx = y. If (a,x) is a vertex ofG1×G2, then

dG1×G2((a,x)) = dG1(a)+ dG2(x).

The corona product G1◦G2 is defined as the graph obtained
from G1 andG2 by taking one copy ofG1 and|V (G1)| copies
of G2 and then by joining with an edge each vertex of theith

copy of G2 which is named(G2, i) with the ith vertex of G1

for i = 1,2..., |V (G1)|. If u is a vertex ofG1◦G2, then

dG1◦G2(u) =

{

dG1(u)+ |V(G2)| if u ∈V (G1)

dG2(u)+1 if u ∈ (G2, i).

The tensor product G1 ⊗ G2 of two graphs G1 and
G2 is the graph with vertex setV (G1) × V (G2) and
E(G1⊗G2) = {(u1,u2)(v1,v2) | u1v1 ∈ E(G1),u2v2 ∈ E(G2)}.
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The tensor product G1 ⊗G2 of graphsG1 and G2 is the
graph with a vertex setV (G1)×V(G2) and(ui,v j) is adjacent
to (uk,vl) wheneveruiuk ∈ E(G1) or v jvl ∈ E(G2). The degree
of a vertex(ui,v j) of G1⊗G2 is given by

dG1⊗G2(ui,v j) = n2dG1(ui)+ n1dG2(v j)− dG1(ui)dG2(v j).

For two given graphsG1 andG2 thedisjunction G1∨G2 is the
graph with vertex setV (G1)×V (G2) in which (u,v),(x,y) ∈
G1 ×G2 are adjacent wheneveru is adjacent withx in G1

or v is adjacent withy in G2. If |V (G1)| = n1, |E(G1)| =
m1, |V (G2)| = n2, |E(G2)| = m2, the degree of a vertex(u,v)
of G1∨G2 is given by

dG1∨G2(u,v) = n2dG1(u)+ n1dG2(v)− dG1(u)dG2(v).

The symmetric difference G1 ⊕G2 of two graphsG1 and
G2 is the graph with vertex setV (G1)×V (G2) in which
(u,v),(x,y) ∈ G1 × G2 are adjacent wheneveru is adjacent
with x in G or v is adjacent withy in G2, but not both. It
follows from the definition that the degree of a vertex(u,v)
of G1⊕G2 is given by

dG1⊕G2(u,v) = n2dG1(u)+ n1dG2(v)−2dG1(u)dG2(v).

Thejoin G=G1+G2 of graphsG1 andG2 with disjoint vertex
setsV1 and V2 and edge setsE1 and E2 is the graph union
G1 ∪G2 together with all the edges joiningV1 and V2. The
composition G = G1[G2] of graphsG1 and G2 with disjoint
vertex setsV1 andV2 such that|V1|= n1, |V2|= n2 and edge sets
E1 andE2 such that|E1|=m1 and|E2|=m2 is the graph with
vertex setV1×V2 andu= (u1,u2) is adjacent withv = (v1,v2)
wheneveru1 is adjacent withv1 or u1 = v1 andu2 is adjacent
with v2. It follows from the definition for a vertex(u1,u2) of
G1[G2] is given by

dG1[G2](u1,u2) = n2dG1(u1)+ dG2(u2).

This paper is organized as follows. In Section 2, we present
some previously known results. In Section 3, we introduce
and investigate the Nano-Zagreb index of a graph also the
Cartesian product, composition, join and disjunction of graphs
are computed. Moreover, we apply some of our results to
compute it. In Section 4, we define the multiplicative Nano-
Zagreb index of a graph also we give some upper bounds for
various graph operations such as corona product, Cartesian
product, composition, disjunction. Moreover, computations are
conducted for some well-known graphs.
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II. PRELIMINARIES AND KNOWN RESULTS

In this section, we shall list some previously known results
that will be needed in the next sections. In mathematical
chemistry, there is a large number of topological indices of
the form

T I = T I(G) = ∑
vi ,v j∈E(G)

F(di,d j)

and
T I = T I(G) = ∏

vi ,v j∈E(G)

F (di,d j).

In 1972, within a study of the structure-dependency of total
π-electron energy (E ), it was shown thatE depends on the sum
of squares of the vertex degrees of the molecular graph (later
named first Zagreb index), and thus provides a measure of
the branching of the carbon-atom skeleton. In the same paper,
also the sum of cubes of degrees of vertices of the molecular
graph was shown to influenceE , but this topological index
was never again investigated and was left to oblivion. We now
establish a few basic properties of this Nano-Zagreb index
and multiplicative Nano-Zagreb index. TheZagreb indices
are widely studied degree-based topological indices and were
introduced byGutman andTrina jstić [1] in 1972. In Chemical
Science, the physico-chemical properties of chemical com-
pounds are often modeled by means of molecular graph based
structure descriptors, which are referred to as topological
indices. Recently, Todeschini et al. [2], [3], have proposed the
multiplicative variants of ordinary Zagreb indices, whichare
defined as follows:

∏
1
= ∏

1
(G) = ∏

u∈V (G)

dG(u)
2,

∏
2
= ∏

2
(G) = ∏

uv∈E(G)

dG(u)dG(v).

Mathematical properties and applications of multiplicative
Zagreb indices are reported in [4], [5], [2], [3]. Mathemati-
cal properties and applications of multiplicative sum Zagreb
indices are reported in [6].

III. N ANO-ZAGREB INDEX OF SOMEGRAPH OPERATIONS

In this section, we define the Nano-Zagreb index of a graph
also Nano-Zagreb index of the Cartesian product, composition,
symmetric difference and disjunction of graphs are computed.
Moreover, we apply some of our results to compute the Nano-
Zagreb index.

A topological index is a graph invariant applicable in
chemistry. The Wiener index is the first topological index
introduced by chemist Harold Wiener [7], [8], [9], [10]. There
are some topological indices based on degrees such as the
first and second Zagreb indices of molecular graphs. There
are some topological indices [11], [7] based on degrees such
as: the firstM1, the secondM2 and third Zagreb indexM3

defined as respectively

M1(G) = ∑
u∈V (G)

dG(u)
2, M2(G) = ∑

uv∈E(G)

(

dG(u)dG(v)

)

,

M3(G) = ∑
uv∈E(G)

∣
∣
∣
∣
dG(u)− dG(v)

∣
∣
∣
∣
.

We now define a new graph invariant, named the Nano-Zagreb
index. This new graph invariant is denoted byN Z(G) and
defined as follows: The Nano-Zagreb index of a graphG is
defined as

N Z(G) = ∑
uv∈E(G)

(d2
G(u)− d2

G(v)).

Throughout this paper,dG(u) > dG(v). Recently, there was a
vast research on comparingZagreb indices see [12], [13],
[14]. A survey on the firstZagreb index can be seen in
[15]. Usage of topological indices inchemistry began in 1947
when chemist Harold Wiener developed the most widely
known topological descriptor, theWiener index, and used it
to determine physical properties of types ofalkanes known as
paraffin. We begin this section with Propositions as follows:

Proposition 3.1: Let G be a regular graph. ThenN Z(G) =
0.
Therefore, by Proposition 3.1, we have the following propo-
sitions.

Proposition 3.2: Let Cn be a cycle withn> 3 vertices. Then
N Z(Cn) = 0.

Proposition 3.3: Let Kn be a complete graph withn vertices.
ThenN Z(Kn) = 0.

Proposition 3.4: Let Kn,n be a complete bipartite graph with
2n vertices. ThenN Z(Kn,n) = 0.
Now, we compute the Nano-Zagreb index for a complete
bipartite graph.

Proposition 3.5: Let Kn,m be a complete bipartite graph with
1< m < n vertices. ThenN Z(Kn,m) = mn(m2− n2).

Proof: Let Kn,m be a complete bipartite graph with 1<
m < n vertices andnm edges. Consider.

N Z(Kn,m) = ∑
uv∈E(Kn,m)

[d2(u)− d2(v)]

= (m2− n2)+ (m2− n2)+ ...+(m2− n2)
︸ ︷︷ ︸

mn

= mn(m2− n2).

Proposition 3.6: Let Pn be a path withn > 3 vertices. Then
N Z(Pn) = 6.

Proof: Let Pn be a path withn > 3 vertices. Consider

N Z(Pn)= ∑
uv∈E(Pn)

[d2(u)−d2(v)]n = 3+0+0...+0×0
︸ ︷︷ ︸

n−2

+3= 6

.
Proposition 3.7: Let Wn be a wheel withn > 4 vertices.

Then
N Z(Wn) = (n−1)((n−1)2−9).

Proof: Let Wn be a wheel withn > 4 vertices. Consider

N Z(Wn) = ∑
uv∈E(Wn)

[d2(u)− d2(v)]

= (32−32)+ (32−32)+ ...(32−32)
︸ ︷︷ ︸

n−1

+
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((n−1)2−32)+ ((n−1)2−32)+ ...((n−1)2−32)
︸ ︷︷ ︸

n−1

= (n−1)((n−1)2−32).

Lemma 3.8: [16] Let G1 andG2 be two connected graphs,
then we have:
(a)

|V (G1×G2)|= |V (G1∨G2)|= |V (G1[G2])|
= |V (G1⊕G2)|= |V (G1)||V (G2)|,

|E(G1×G2)|= |E(G1)||V (G2)|+ |V(G1)||E(G2)|,
|E(G1+G2)|= |E(G1)|+ |E(G2)|+ |V(G1)V (G2)|,
|E(G1[G2])|= |E(G1)||V (G2)|2+ |E(G1)||V (G2)|,
|E(G1∨G2)|= |V (G1)||V (G2)|2+ |E(G1)||V (G1)|2

−2|E(G1)||E(G2)|,
|E(G1⊕G2)|= |E(G1)||V (G2)|2+ |E(G2)||V (G1)|2

−42|E(G1)||E(G2)|.

(b) G1 × G2 is connected if and only ifG1 and G2 are
connected.

(c) If (a,b) is a vertex ofG1 ×G2, then dG1×G2

(
(a,b)

)
=

dG1(a)+ dG2(b).
(d) If (a,b) is a vertex of G1[G2] then dG1[G2]

(
(a,b)

)
=

|V (G1)|dG2(a)+ dG2(b).
(e) If (a,b) is a vertex ofG1⊕G2 or G1⊗G2, we have:

dG1⊕G2

(
(a,b)

)
= |V (G1)|dG1(a)+ |V(G1)|dG2(b)

−2dG1(a)dG2(b).

dG1⊗G2

(
(a,b)

)
= |V (G2)|dG1(a)+ |V(G1)|dG2(b)

− dG1(a)dG2(b).

(f) If u is a vertex ofG1∨G2 then we have:

dG1∨G2(u) =

{

dG1(u)+ |V(G2)| if u ∈V (G1)

dG2(u)+ |V(G1)| if u ∈V (G2).

Proof: The parts (a) and (b) are consequence of defi-
nitions and some famous results of the book of Imrich and
Klavzar [16]. For the proof of (c-f) we refer to [17].

Theorem 3.9: Let G1 andG2 be two graphs withn1 andn2

vertices,m1 andm2 edges respectively. Then

N Z(G1×G2) = n1

(

N Z(G2)+2M3(G2)

)

+ n2

(

N Z(G1)+2M3(G1)

)

.

Proof: From the definition of the Cartesian product of
graphs, we have:

E(G1×G2) = {(a,x)(b,y) : ab ∈ E(G1), x = y or

xy ∈ E(G2),a = b}
therefore we can write:

N Z(G1×G2)

= ∑
(ax)(by)∈E(G1×G2)

[dG1×G2((a,x))]
2− [dG1×G2((b,y))]

2

= ∑
a∈V (G1)

∑
(xy)∈E(G2)

[dG1(a)+ dG2(x)]
2− [dG1(a)+ dG2(y)]

2

+ ∑
x∈V (G2)

∑
(ab)∈E(G1)

[dG2(x)+ dG1(a)]
2− [dG2(x)+ dG1(b)]

2

= ∑
a∈V (G1)

∑
(xy)∈E(G2)

[d2
G2
(x)− d2

G2
(y)]+2dG1(a)

(
dG2(x)− dG2(y)

)

+ ∑
x∈V (G2)

∑
(ab)∈E(G1)

[d2
G1
(a)− d2

G1
(b)]+2dG2(x)

(
dG1(a)− dG1(b)

)

= n1

(

N Z(G2)+2M3(G2)

)

+ n2

(

N Z(G1)+2M3(G1)

)

.

As an application of Theorem 3.9, we list explicit formulae
for the third Zagreb index of the rectangular gridPr × Ps,
C4-nanotubePr ×Cq andC4-nanotorusPr ×Ws. The formulae
follow from Theorem 3.9 by using the expressions [18],

M1(Pn) = 4n−6,

M1(Cn) = 4n.

Example 3.10: For any graphsPr ×Ps, Pr ×Cq andPr ×K4,
we have the following results:

1) N Z(Pr ×Ps) = 12(r+ s), r,s > 3,

2) N Z(Pr ×Cq) = 6q,

3) N Z(Pr ×K4) = 24.

Theorem 3.11: Let G1 and G2 be two graphs withn1 and
n2 vertices,m1 andm2 edges respectively. Then

N Z(G1[G2]) = [2n2m1M3(G2)+ n1N Z(G2)]

+ [2n2m2M3(G1)+ n2N Z(G1)].

Proof: From the definition of the compositionG1[G2] we
have:

N Z(G1[G2])

= ∑
(uiv j)(upvq)∈E(G1[G2])

[dG1[G2](ui,v j)]
2− [dG1[G2](up,vq)]

2

= ∑
ui∈V (G1)

∑
(v jvq)∈E(G2)

[dG1(ui)n2+ dG2(v j)]
2

− [dG1(ui)n2+ dG2(vq)]
2

+ ∑
(uiup)∈E(G1)

∑
v j∈V (G2)

[dG1(ui)n2+ dG2(v j)]
2

− [dG1(up)n2+ dG2(v j)]
2

= ∑
ui∈V (G1)

∑
(v jvq)∈E(G2)

n2dG1(ui)[dG2(v j)− dG2(vq)]

+ [d2
G2
(v j)− d2

G2
(vq)]

+ ∑
(uiup)∈E(G1)

∑
v j∈V (G2)

n2dG2(v j)[dG1(ui)− dG1(up)]

+ n2
2[d

2
G1
(ui)− d2

G1
(up)]

= [2n2m1M3(G2)+ n1N Z(G2)]

+ [2n2m2M3(G1)+ n2N Z(G1)].
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As an application of Theorem 3.11, we present formulae for
the Nano-Zagreb index of the fence graphCq[Pr] and the closed
fence graphPr[Cq].

Example 3.12: (Cq[Pr]) = 6q, (Pr[Cq]) = 6q.
Theorem 3.13: Let G1 and G2 be two graphs withn1 and

n2 vertices,m1 andm2 edges respectively. Then

N Z(G1 ◦G2) = N Z(G1)+2n2M3(G1)+ n1N Z(G2)

−2n1M3(G2)+2M1(G1)n2+ n1n3
2

+4n2m1−2M1(G2)n1− n1n2−4m2n1.

Proof: Using the definition of the Nano-Zagreb index, we
have

N Z(G1 ◦G2)

= ∑
uv∈(G1◦G2)

[d(G1◦G2)(u)]
2− [d(G1◦G2)(v)]

2

+ ∑
uv∈E(G2)

n1

∑
i=1

[d2
(G2)

(u)− d2
(G2)

(v)]−2[d(G2)(u)− d(G2)(v)]

+ ∑
u∈V(G1)

∑
v∈V (G2)

[d2
(G1)

(u)+ n2
2+2n2d(G1)(u)− d2

(G2)
(v)

−1−2d(G2)(v)]

= N Z(G1)+2n2M3(G1)+ n1N Z(G2)−2n1M3(G2)

+2M1(G1)n2+ n1n3
2+4n2m1−2M1(G2)n1− n1n2

−4m2n1.

Example 3.14: N Z(Pr ◦Cq) = rq3− rq−28q+6.
Theorem 3.15: Let G1 and G2 be two graphs withn1 and

n2 vertices,m1 andm2 edges respectively. Then

N Z(G1+G2) = N Z(G1)−2n2M3(G1)+N Z(G2)

−2n1M3(G2)+ n2M1(G1)+ n3
2n1+4n2

2m1

− n1M1(G2)− n3
1n2−4n2

1m2.

Proof: From the definition, we know that:

E(G1+G2) = E(G1)∪E(G2)∪{uv : u ∈V (G1),v ∈V (G2)}.

So, we have:

N Z(G1+G2) = ∑
uv∈(G1+G2)

[d(G1+G2)(u)]
2− [d(G1+G2)(v)]

2

= ∑
uv∈E(G2)

[d(G1+G2)(u)]
2− [d(G1+G2)(v)]

2

+ ∑
uv∈E(G1)

[d(G1+G2)(u)]
2− [d(G1+G2)(v)]

2

+ ∑
u∈V(G1)

∑
v∈V (G2)

[d(G1+G2)(u)]
2− [d(G1+G2)(v)]

2.

It is easy to see that:

∑
uv∈E(G1)

[d(G1+G2)(u)]
2− d(G1+G2)(v)]

2

= ∑
uv∈E(G1)

[d2
(G1)

(u)− d2
(G1)

(v)]−2n2
(
d(G1)(u)− d(G1)(v)

)

= N Z(G1)−2n2M3(G1). (1)

and similarly we have:

∑
uv∈E(G2)

[d(G1+G2)(u)− d(G1+G2)(v)]
2

= ∑
uv∈E(G2)

[d2
(G2)

(u)− d2
(G2)

(v)]−2n1
(
d(G2)(u)− d(G2)(v)

)

= N Z(G2)−2n1M3(G2). (2)

Finally, we can write:

∑
u∈V (G1)

∑
v∈V (G2)

[d(G1+G2)(u)]
2− [d(G1+G2)(v)]

2

= ∑
u∈V (G1)

∑
v∈V (G2)

[d(G1)(u)+ n2]
2− [d(G2)(v)− n1]

2

= ∑
u∈V (G1)

∑
v∈V (G2)

[

d2
(G1)

(u)+ n2
2+2n2d(G1)(u)− d2

(G2)
(v)

− n2
1−2n1d(G2)(v)

]

(3)

= n2M1(G1)+ n3
2n1+4n2

2m1− n1M1(G2)− n3
1n2−4n2

1m2.
(4)

Combining those three equations (1), (2), (4) will complete
the proof.

Example 3.16: N Z(Pr +Cq) = q3r − qr3 − 4r2q − 4q2 +
4q2r−4qr+36r−48.4q2− qr−2q−2.

Theorem 3.17: Let G1 and G2 be two graphs withn1 and
n2 vertices,m1 andm2 edges respectively. Then

N Z(G1∨G2) = NZ(G1)+2n2M3(G1)+NZ(G2)+2n1M3(G2)

+ n2M1(G1)+ n3
2n1+4n2m1− n1M1(G2)− n3

1n2

−4n1m2.

Proof: By the definition of the Nano-Zagreb index and
from the above partition of the edge set inG1∨G2, we have

N Z(G1∨G2)

= ∑
(uiv j)(upvq)∈E(G1∨G2)

[dG1∨G2(ui,v j)]
2− [dG1∨G2(up,vq)]

2

= ∑
(uiup)∈E(G1)

[
(
dG1(ui)+ n2]

2− [dG1(up)+ n2]
2

∑
(v jvq)∈E(G2)

[(dG2(v j)+ n1]
2− [dG2(vq)+ n1]

2

+ ∑
ui∈V (G1)

∑
v j∈V (G2)

[dG1(ui)+ n2]− [dG2(v j)+ n1]
2

= ∑
(uiup)∈E(G1)

[d2
G1
(ui)− d2

G1
(up)]+2n2[dG1(ui)− dG1(up)]

∑
(v jvq)∈E(G2)

[d2
G2
(v j)− d2

G2
(vq)]+2n1[dG2(v j)− dG1(vq)]

+ ∑
ui∈V (G1)

∑
v j∈V (G2)

[d2
G1
(ui)+ n2

2+2n2dG1(ui)]

− [d2
G2
(v j)+ n2

1+2n1dG1(v j)]

= NZ(G1)+2n2M3(G1)+NZ(G2)+2n1M3(G2)

+ n2M1(G1)+ n3
2n1+4n2m1− n1M1(G2)− n3

1n2−4n1m2.

Example 3.18: N Z(Pr ∨K4) = 4r3−36r+34.
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IV. T HE MULTIPLICATIVE NANO-ZAGREB INDEX OF SOME

GRAPH OPERATIONS

In this section, we define the multiplicative Nano-Zagreb
index of a graph also we give some upper bounds for the
multiplicative Nano-Zagreb index of various graph operations
such as corona product, Cartesian product, composition, dis-
junction and symmetric difference. Moreover, computations
are conducted for some well-known graphs. Eliasi et al. [4]
considered a new multiplicative version of the first Zagreb
index as

II∗1(G) = ∏
uv∈E(G)

[dG(u)+ dG(v)].

Recently many other multiplicative indices and coindices of
graphs were studied, for example, in [19], [20], [21]. In this
paper, we initiate a study of the multiplicative Nano-Zagreb
indices of graphs. We define the multiplicative Nano-Zagreb
index of a graphG as follows

N
∗Z(G) = ∏

uv∈E(G)

[d2
G(u)− d2

G(v)].

We begin this section with standard inequality as follows:
Lemma 4.1 (Arithmetic Mean-Geometric Mean Inequality):

[22] Let x1,x2, . . . ,xn be non-negative numbers. Then

x1+ x2+ ...+ xn

n
> n

√
x1x2...xn (5)

holds with equality if and only if all thexk’s are equal.
Proposition 4.2: Let G be a regular graph. ThenN ∗Z(G) =

0.
Therefore, by Proposition 4.2 we have the following proposi-
tions.

Proposition 4.3: Let Cn be a cycle withn> 3 vertices. Then
N ∗Z(Cn) = 0.

Proposition 4.4: Let Kn be a complete graph withn vertices.
ThenN ∗Z(Kn) = 0.

Proposition 4.5: Let Kn,n be a complete bipartite graph with
2n vertices. ThenN ∗Z(Kn,n) = 0.
Now, we compute the Multiplicative Nano-Zagreb index for a
complete bipartite graph.

Proposition 4.6: Let Kn,m be a complete bipartite graph with
m+ n vertices. ThenN ∗Z(Kn,m) = [m2− n2]mn.

Proof: Let Kn,m be a complete bipartite graph withm+n
vertices andnm edges. Consider.

N
∗Z(Kn,m) = ∏

uv∈E(Kn,m)

[d2(u)− d2(v)]

= (m2− n2)× ...× (m2− n2)(m2− n2)
︸ ︷︷ ︸

mn

= [m2− n2]mn.

Proposition 4.7: Let Pn be a path withn > 3 vertices. Then
N ∗Z(Pn) = 0.

Proof: Let Pn be a path withn > 3 vertices. Consider

N
∗Z(Pn) = ∏

uv∈E(Pn)

[d2(u)− d2(v)]

= 3×0×0...×0×0
︸ ︷︷ ︸

n−2

×3= 0.

Proposition 4.8: Let Wn be a wheel withn > 4 vertices.
ThenN ∗Z(Wn) = 0.

Proof: Let Wn be a wheel withn > 4 vertices. Consider

N
∗Z(Wn)

= ∏
uv∈E(Wn)

[d2(u)− d2(v)]

= (32−32)× (32−32)× ...× (32−32)

×
(
(n−1)2−32)×

(
(n−1)2−32)× ...×

(
(n−1)2−32)= 0.

Theorem 4.9: Let G1 andG2 be two graphs withn1 andn2

vertices,m1 andm2 edges respectively. Then

N
∗Z(G1×G2)

6

[
n1N

∗Z(G2)+4m1M3(G2)

n1m2

]n1m2

×
[

n2N
∗Z(G1)+4m2M3(G1)

n2m1

]n2m1

.

Proof: By the definition of the multiplicative Nano-
Zagreb index and from the above partition of the edge set
in G1×G2, we have

N
∗Z(G1×G2)

= ∏
(uiv j)(upvq)∈E(G1×G2)

[dG1×G2(ui,v j)]
2− [dG1×G2(up,vq)]

2.

This actually can be written as

= ∏
ui∈V (G1)

∏
(v jvq)∈E(G2)

[dG1(ui)+ dG2(v j)]
2− [dG1(ui)+ dG2(vq)]

2

× ∏
v j∈V (G2)

∏
(uiup)∈E(G1)

[dG1(ui)+ dG2(v j)]
2− [dG1(up)+ dG2(v j)]

2.

However, from the inequality (5), we get

6

[

∑
ui∈V (G1)

∑
(v jvq)∈E(G2)

[d2
G1
(ui)+ d2

G2
(v j)+2G1(ui)dG2(v j)]

− [d2
G1
(ui)+ d2

G2
(vq)+2dG1(ui)dG2(vq)]

]n1m2

×
[

∑
v j∈V (G2)

∑
(uiup)∈E(G1)

[d2
G1
(ui)+ d2

G2
(v j)+2G1(ui)dG2(v j)]

− [d2
G1
(up)+ d2

G2
(v j)+2dG1(up)dG2(v j)]

]n2m1

=

[

∑
ui∈V (G1)

∑
(v jvq)∈E(G2)

[d2
G2
(v j)− d2

G2
(vq)]

+2dG1(ui)[dG2(v j)− dG2(vq)]

]n1m2

×
[

∑
v j∈V (G2)

∑
(uiup)∈E(G1)

[d2
G1
(ui)− d2

G1
(up)]

+2dG2(v j)[dG1(ui)− dG1(up)]

]n2m2

6

[
n1N

∗Z(G2)+4m1M3(G2)

n1m2

]n1m2
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×
[

n2N
∗Z(G1)+4m2M3(G1)

n2m1

]n2m1

.

Theorem 4.10: Let G1 and G2 be two graphs withn1 and
n2 vertices,m1 andm2 edges respectively. Then

N
∗Z(G1 ◦G2)

6

[
N ∗Z(G1)+2n2M3(G1)

m1

]m1

×
[

n1N
∗Z(G2)+2n1M3(G2)

n1m2

]n1m2

×
[

n2M1(G1)+ n3
2n1+4n2

2m1− n1M1(G2)− n1n2−4m2n1

n1n2

]n1n2

.

Proof: By the definition of the multiplicative Nano-
Zagreb index and from the above partition of the edge set
in G1◦G2, we have

N
∗Z(G1 ◦G2)

= ∏
(uiv j)(upvq)∈E(G1◦G2)

[dG1◦G2(ui,v j)]
2− [dG1◦G2(up,vq)]

2

= ∏
(uiup)∈E(G1)

[dG1(ui)+ n2]
2− [dG1(up)+ n2]

2

× ∏
ui∈V (G1)

∏
(v jvq)∈E(G2)

[dG2(v j)+1]2− [dG2(vq)+1]2

× ∏
ui∈V (G1)

∏
v j∈V (G2)

[dG1(ui)+ n2]
2− [dG2(v j)+1]2

= ∏
(uiup)∈E(G1)

[d2
G1
(ui)− d2

G1
(up)]+2n2[dG1(ui)− dG1(up)]

× ∏
ui∈V (G1)

∏
(v jvq)∈E(G2)

[d2
G2
(v j)− d2

G2
(vq)]

+2[dG2(v j)− dG2(vq)]

× ∏
ui∈V (G1)

∏
v j∈V (G2)

[d2
G1
(ui)+ n2

2+2n2dG1(ui)− d2
G2
(v j)

−1−2dG2(v j)].

However, from the inequality (5), we get

6

[
N ∗Z(G1)+2n2M3(G1)

m1

]m1

×
[

n1N
∗Z(G2)+2n1M3(G2)

n1m2

]n1m2

×
[

n2M1(G1)+ n3
2n1+4n2

2m1− n1M1(G2)− n1n2−4m2n1

n1n2

]n1n2

.

Theorem 4.11: Let G1 and G2 be two graphs withn1 and
n2 vertices,m1 andm2 edges respectively. Then

N
∗Z(G1[G2])6

[
n1N

∗Z(G2)+4n2m1M3(G2)

n1m2

]n1m2

×
[

n3
2N

∗Z(G1)+4n2m2M3(G2)

m1n2

]m1n2
2

.

Proof: By the definition of the multiplicative Nano-
Zagreb index and from the above partition of the edge set
in G1[G2], we have

N
∗Z(G1[G2])

= ∏
(uiv j)(upvq)∈E(G1[G2])

[dG1[G2](ui,v j)]
2− [dG1[G2](up,vq)]

2

= ∏
ui∈V (G1)

∏
(v jvq)∈E(G2)

[dG1(ui)n2+ dG2(v j)]
2

− [dG1(ui)n2+ dG2(vq)]
2

× ∏
(uiup)∈E(G1)

∏
v j∈V (G2)

[

[(dG1(ui)n2+ dG2(v j)]
2

− [dG1(up)n2+ dG2(v j)]
2

]n2

= ∏
ui∈V (G1)

∏
(v jvq)∈E(G2)

[d2
G2
(v j)− d2

G2
(vq)]

+2n2dG1(ui)[dG2(v j)− dG2(vq)]

× ∏
(uiup)∈E(G1)

∏
v j∈V (G2)

[

n2
2[d

2
G1
(ui)− d2

G1
(up)]

+2n2dG2(v j)[dG1(ui)− dG1(up)]

]n2

.

However, from the inequality (5), we get

6

[
n1N

∗Z(G2)+4n2m1M3(G2)

n1m2

]n1m2

×
[

n3
2N

∗Z(G1)+4n2m2M3(G2)

m1n2

]m1n2
2

.

Theorem 4.12: Let G1 and G2 be two graphs withn1 and
n2 vertices,m1 andm2 edges respectively. Then

N
∗Z(G1⊗G2) = 0.

Proof: By the definition of the multiplicative Nano-
Zagreb index and from the above partition of the edge set
in G1⊗G2, we have

N
∗Z(G1⊗G2)

= ∏
(uiv j)(upvq)∈E(G1⊗G2)

[dG1⊗G2(ui,v j)]
2− [dG1⊗G2(up,vq)]

2

= ∏
(uiup)∈E(G1)

∏
v j∈V (G2)

[n1dG2(v j)+ n2dG1(ui)− dG1(ui)dG2(v j)]
2

− [n1dG2(v j)+ n2dG1(up)− dG1(up)dG2(v j)]
2

× ∏
ui∈V (G1)

∏
v j∈V (G2)

[n1dG2(v j)+ n2dG1(ui)− dG1(ui)dG2(v j)]
2

− [n1dG2(v j)+ n2dG1(ui)− dG1(ui)dG2(v j)]
2

= ∏
ui∈V (G1)

∏
(v j ,vq)∈E(G2)

[
n2

1d2
G2
(v j)+ n2

2d2
G1
(ui)− d2

G1
(ui)d

2
G2
(v j)

+2n1n2dG1(ui)dG2(v j)−2n2d2
G1
(ui)dG2(v j)

−2n1dG1(ui)d
2
G2
(v j)

]

−
[
n2

1d2
G2
(v j)+ n2

2d2
G1
(up)− d2

G1
(up)d

2
G2
(v j)

+2n1n2dG1(up)dG2(v j)−2n2d2
G1
(up)dG2(v j)
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−2n1dG1(up)d
2
G2
(v j)

]

× ∏
(uiup)∈E(G1)

∏
v j∈V (G2)

[

n2
1d2

G2
(v j)+ n2

2d2
G1
(ui)− d2

G1
(ui)d

2
G2
(v j)

+2n1n2dG1(ui)dG2(v j)−2n2d2
G1
(ui)dG2(v j)

−2n1dG1(ui)d
2
G2
(v j)

]

−
[
n2

1d2
G2
(v j)+ n2

2d2
G1
(ui)− d2

G1
(ui)d

2
G2
(v j)

+2n1n2dG1(ui)dG2(v j)−2n2d2
G1
(ui)dG2(v j)

−2n1dG1(ui)d
2
G2
(v j)

]
= 0.

Theorem 4.13: Let G1 and G2 be two graphs withn1 and
n2 vertices,m1 andm2 edges respectively. Then

N
∗Z(G1∨G2)

6

[
N ∗Z(G1)+2n2M3(G1)

m1

]m1

×
[
N ∗Z(G2)+2n1M3(G2)

m2

]m2

×
[

n2M1(G1)+ n3
2n1+4n2m1− n1M1(G2)− n3

1n2−4n1m2

n1n2

]n1n2

.

Proof: By the definition of the multiplicative Nano-
Zagreb index and from the above partition of the edge set
in G1∨G2, we have

N
∗Z(G1∨G2)

= ∏
(uiv j)(upvq)∈E(G1∨G2)

[dG1∨G2(ui,v j)]
2− [dG1∨G2(up,vq)]

2

= ∏
(uiup)∈E(G1)

[
(
dG1(ui)+ n2]

2− [dG1(up)+ n2]
2

∏
(v jvq)∈E(G2)

[(dG2(v j)+ n1]
2− [dG2(vq)+ n1]

2

× ∏
ui∈V (G1)

∏
v j∈V (G2)

[dG1(ui)+ n2]− [dG2(v j)+ n1]
2

= ∏
(uiup)∈E(G1)

[d2
G1
(ui)− d2

G1
(up)]+2n2[dG1(ui)− dG1(up)]

∏
(v jvq)∈E(G2)

[d2
G2
(v j)− d2

G2
(vq)]+2n1[dG2(v j)− dG1(vq)]

× ∏
ui∈V (G1)

∏
v j∈V (G2)

[d2
G1
(ui)+ n2

2+2n2dG1(ui)]

− [d2
G2
(v j)+ n2

1+2n1dG1(v j)].

However, from the inequality (5), we get

6

[
N ∗Z(G1)+2n2M3(G1)

m1

]m1

×
[
N ∗Z(G2)+2n1M3(G2)

m2

]m2

×
[

n2M1(G1)+ n3
2n1+4n2m1− n1M1(G2)− n3

1n2−4n1m2

n1n2

]n1n2

.

Theorem 4.14: Let G1 and G2 be two graphs withn1 and
n2 vertices,m1 andm2 edges respectively. Then

N
∗Z(G1⊕G2) = 0.

Proof: By the definition of the multiplicative Nano-
Zagreb index and from the above partition of the edge set
in G1⊕G2, we have

N
∗Z(G1⊕G2)

= ∏
(uiv j)(upvq)∈E(G1⊕G2)

[dG1⊕G2(ui,v j)]
2− [dG1⊕G2(up,vq)]

2

= ∏
ui∈V (G1)

∏
(v jvq)∈E(G2)

[
(n2dG1(ui)+ n1dG2(v j)

−2dG1(ui)dG2(v j)
]2

−
[
n2dG1(ui)+ n1dG2(vq)−2dG1(ui)dG2(vq)

]2

× ∏
(uiup)∈E(G1)

∏
v j∈V (G2)

[
[
n2dG1(ui)+ n1dG2(v j)

−2dG1(ui)dG2(v j)
]2

[
n2dG1(up)+ n1dG2(v j)−2dG1(up)dG2(v j)

]
]n2

× ∏
ui∈V (G1)

∏
v j∈V (G2)

[
n2dG1(ui)+ n1dG2(v j)−2dG1(ui)dG2(v j)

]2

−
[
n2dG1(ui)+ n1dG2(v j)−2dG1(ui)dG2(v j)

]2

= ∏
ui∈V (G1)

∏
(v jvq)∈E(G2)

[
n2

2d2
G1
(ui)+ n2

1d2
G2
(v j)

−4d2
G1
(ui)d

2
G2
(v j)

+2n1n2dG1(ui)dG2(v j)−4n2d2
G1
(ui)dG2(v j)

−4n1dG1(ui)d
2
G2
(v j)

]

−
[
n2

2d2
G1
(ui)+ n2

1d2
G2
(vq)−4d2

G1
(ui)d

2
G2
(vq)

+2n1n2dG1(ui)dG2(vq)−4n2d2
G1
(ui)dG2(vq)

−4n1dG1(ui)d
2
G2
(vq)

]

∏
(uiup)∈E(G1)

∏
v j∈V (G2)

[
[
n2

2d2
G1
(ui)+ n2

1d2
G2
(v j)

−4d2
G1
(ui)d

2
G2
(v j)

+2n1n2dG1(ui)dG2(v j)−4n2d2
G1
(ui)dG2(v j)

−4n1dG1(ui)d
2
G2
(v j)

]

−
[
n2

2d2
G1
(up)+ n2

1d2
G2
(v j)−4d2

G1
(up)d

2
G2
(v j)

+2n1n2dG1(up)dG2(v j)−4n2d2
G1
(up)dG2(v j)

−4n1dG1(up)d
2
G2
(v j)

]
]n

× ∏
ui∈V (G1)

∏
v j∈V (G2)

[
n2

2d2
G1
(ui)+ n2

1d2
G2
(v j)−4d2

G1
(ui)d

2
G2
(v j)

+2n1n2dG1(ui)dG2(v j)−4n2d2
G1
(ui)dG2(v j)

−4n1dG1(ui)d
2
G2
(v j)

]

−
[
n2

2d2
G1
(ui)+ n2

1d2
G2
(v j)−4d2

G1
(ui)d

2
G2
(v j)

+2n1n2dG1(ui)dG2(v j)−4n2d2
G1
(ui)dG2(v j)

−4n1dG1(ui)d
2
G2
(v j)

]
= 0.

Two graphs areisomorphic if there exists a vertex labeling
that preserves adjacency, they can be viewed as different
geometrical representations of the same abstract graph defined
as a set of elements (vertices){vi}, i ∈ 1,2, ...,n and a set of
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elements (edges) that are unordered duplets from the former
set{uiv j}, i /∈ j ∈ 1,2, ...,n.

Example 4.15: As an application in Chemistry, shows that
in all alkanes onn vertices, we computed the value ofN Z
andN ∗Z depends on the respected isomer. For instance, we
computed these values for octane isomers as reported in Table
I. All isomers of octane are depicted in Figure 1.

TABLE I
N Z AND N ∗Z OF THE OCTANE ISOMERS.

Molecule N Z N
∗Z

Octane 6 0
2-methyl-heptane 42 0
3-methyl-heptane 40 0
4-methyl-heptane 24 0
3-ethyl-hexane 32 0
2,2-dimethyl-hexane 68 759375
2,3-dimethyl-hexane 24 0
2,4-dimethyl-hexane 60 0
2,5-dimethyl-hexane 78 12960000
3,3-dimethyl-hexane 24 0
3,4-dimethyl-hexane 60 0
2-methyl-3-ethyl-pentane 68 3628800
3-methyl-3-ethyl-pentane 32 0
2,2,3-trimethyl-pentane 24 0
2,2,4-trimethyl-pentane 60 699840
2,3,3-trimethyl-pentane 42 19200
2,3,4-trimethyl-pentane 90 0
2,2,3,3-tetramethylbutane 32 0

3-methyl heptane

Octan

b b b b b b b b
b b b b b b

b b

2,5-dimethyl

b b b b b
b b b

2,3,4, trimethyl-
pentanehexane

bb b b b b b b
b

2-methyl heptane

b b b b b b
bb

3,4-dimethyl
hexane

b b b b b
b

b b

2,2,3, trimethyl
pentane

b b b b b b b

b

b b b b b b
b

b

2,2-dimethyl

hexane

b b b b b
b

b b

2,2,4 trimethyl
pentane

b b b b b b b

b

4-methyl heptane

b b b b b b
b

b

3,3-dimethyl
hexane

b b b b b
b b

b

pentane

3-ethyl-2-methyl
b
b

b

bbbbb

2,3,3 trimethyl
pentane

b b b b b b
b b

2,3-dimethyl
hexane

b b b b b b

b
b

3-ethyl hexane

b b b b b
b

b
b

3-thyl-3-methyl
pentane

b b b b b b

b b

methyl-butane
2,2,3,3-tetra2,4-dimethyl

hexane

b b b b
b

b

b

b

Fig. 1. All octane isomers.
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