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Nano-Zagreb Index and Multiplicative Nano-Zagreb
Index of Some Graph Operations

Akbar Jahanbani and Hajar Shooshtary

Abstract—Let G be a graph with vertex setV(G) and edge set The tensor product G; ® G, of graphsG; and G, is the
E(G). The Nano-Zagreb and mulztiplicativze Nano-Zagre*b indices graph with a vertex s&t(Gy) x V(Gz) and (u;,v;) is adjacent
of G are AZ(G) = Ywee()(d*(u) —d*(v)) and AZ(G) = 5 (y, v;) whenevemuiu, € E(Gy) orvjv; € E(Gy). The degree

Muee(e)(d2(u) — d?(v)), respectively, whered(v) is the degree . .
of the v)ertex v. In this paper, we define two types of Zagreb of a vertex(u;,vj) of G1® G is given by
indices based on degrees of vertices. Also the Nano-Zagreidex

and multiplicative Nano-Zagreb index of the Cartesian prodlct, del®Gz(Ui,Vj) = nZdGl(Ui) +mdg, (vj) — dGl(ui)dG2 (vj).
symmetric difference, composition and disjunction of grafhs are
computed. For two given graph&; andG; thedisjunction G1V G is the

Index Terms—Graph operations, Nano-Zagreb index, Multi-

plicative Nano-Zagreb index, Zagreb index. graph with vertex sev(Gy) xV(G,) in which (u,v), (x.y) €

G1 x Gy are adjacent whenever is adjacent withx in Gy
or v is adjacent withy in G,. If |V(G1)| = ny,|E(Gy)| =
my, [V(Gy)| = ny,|E(Gy)| = mp, the degree of a vertefu, V)

I. INTRODUCTION T
of G1 vV G; is given by

HROUGHOUT this paper, all graphs are simple. Gave
a (molecular) graph with vertex sé{G) = {v,Va,...,Va} do, v, (U,V) = Npdg, (U) + Nidg, (V) — dg, (U)dg, (V).
and edge seE(G). Denote byuv the edge ofG, connecting
the verticesu andv. For any vertexu of G, the degree of The symmetric difference G; @ G, of two graphsG; and
u is denoted byd(u). We consider only simple connected>, is the graph with vertex se¥(G;) x V(Gz) in which
graphs, i.e. connected graphs without loops and multiple, V), (x,y) € G1 x G, are adjacent whenever is adjacent
edges. Supposk denotes the class of all graphs, then a fungvith x in G or v is adjacent withy in Gy, but not both. It
tion A: ¥ — Rt is called a topological index i622 H implies follows from the definition that the degree of a vertexv)
A(G) =A\(H). Usage of topological indices in chemistry begaaf G1® G; is given by
in 1947 when chemist Harold Wiener developed the most
widely known topological descriptor, thé/iener index, and dg, 56, (U, V) = N2dg, (U) + N1dg, (V) — 2dg, (U)dg, (V).
used it to determine physical properties of types of alkan
known as paraffin. Th€artesian product G; x G, of graphs
G; and G; has the vertex s&f (G1 x G2) =V (G;1) x V(Gy)
and(a,x)(b,y) is an edge of5; x G, if a=b andxy € E(Gy),
orabe E(G1) andx =Y. If (a,x) is a vertex ofG; x Gy, then

?ﬁejoin G = G1 + G, of graphsG; andGy with disjoint vertex
setsV; andV, and edge set&; and E;, is the graph union
G1 UGy together with all the edges joining; andV,. The
composition G = G1[G] of graphsG; and G, with disjoint
vertex setd/; andV, such thatV;| = ny, [Vo| = n, and edge sets
dg, G, ((a,%)) = dg, (a) + dg,(X). E; andE; such thatE;| = m and|Ez| = my is the graph with
] ] . vertex selV; x Vo andu= (uz,uy) is adjacent withv = (v1,Vv)
The corona product G; 0 Gy is defined as the graph Obta'”e%heneverul is adjacent withv, or u; = v; andu, is adjacent

from G, andG; by taking one copy 06; and|V(G)| copies it v, It follows from the definition for a vertexuy, uz) of
of G, and then by joining with an edge each vertex of tHe G1[Gy] is given by

copy of G, which is named G,,i) with the i vertex of Gy

fori=1,2..,|V(Gy)|. If uis a vertex ofGy o Gy, then Ao, ey (Ut U) = N, (Ur) + d, (Up).
dg,06, (U) = de, (U)+[V(Gz)| if ueV(Gy)
10G; dg,(u)+1 if ue(Gyi). This paper is organized as follows. In Section 2, we present

some previously known results. In Section 3, we introduce

and investigate the Nano-Zagreb index of a graph also the

Cartesian product, composition, join and disjunction afdrs

are computed. Moreover, we apply some of our results to
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[1. PRELIMINARIES AND KNOWN RESULTS M3(G) = z da(u) — dg(V)|.

In this section, we shall list some previously known results uek(G)

that will be needed in the next sections. In mathematic@e now define a new graph invariant, named the Nano-Zagreb
chemistry, there is a large number of topological indices @idex. This new graph invariant is denoted by Z(G) and

the form defined as follows: The Nano-Zagreb index of a gr&plis
TI=TI(G) = ) F(di,dj) defined as
Vi,Vi€E(G) 2 2
AZ(G)= 3 (dg(u)—dg(v)).
and uweE(G)
— — 7 (d: .
TI=TI(G) _vi VJEIL(G)'/(d"dJ)' Throughout this papedg(u) > dg(v). Recently, there was a

vast research on comparirgpgreb indices see [12], [13],
In 1972, within a study of the structure-dependency of totfl4]. A survey on the firstZagreb index can be seen in

r-electron energyX), it was shown that” depends on the sum[15]. Usage of topological indices ichemistry began in 1947

of squares of the vertex degrees of the molecular graplr (latehen chemist Harold Wiener developed the most widely

named first Zagreb index), and thus provides a measurekobwn topological descriptor, thé/iener index, and used it

the branching of the carbon-atom skeleton. In the same pagerdetermine physical properties of typesabkanes known as

also the sum of cubes of degrees of vertices of the molecuparaffin. We begin this section with Propositions as follows

graph was shown to influencé&, but this topological index  Proposition 3.1: Let G be a regular graph. Then'Z(G) =

was never again investigated and was left to oblivion. We nddv

establish a few basic properties of this Nano-Zagreb ind@kerefore, by Proposition 3.1, we have the following propo-

and multiplicative Nano-Zagreb index. Théagreb indices sitions.

are widely studied degree-based topological indices areé we Proposition 3.2: Let C, be a cycle witn > 3 vertices. Then

introduced byGutman andTrinajsti¢ [1] in 1972. In Chemical .4#Z(C,) =0.

Science, the physico-chemical properties of chemical com-Proposition 3.3: Let K, be a complete graph withvertices.

pounds are often modeled by means of molecular graph ba3éen.+Z(K,) = 0.

structure descriptors, which are referred to as topoldgica Proposition 3.4: Let K, be a complete bipartite graph with

indices. Recently, Todeschini et al. [2], [3], have progbtee 2n vertices. Thent Z(K,n) = 0.

multiplicative variants of ordinary Zagreb indices, whiale Now, we compute the Nano-Zagreb index for a complete

defined as follows: bipartite graph.
2 Proposition 3.5: Let Ky m be a complete bipartite graph with
E' - D(G) = . |v_| do(u)”, 1 < m< n vertices. Thent Z(Knm) = mn(m? — n?).
v(©) Proof: Let K, be a complete bipartite graph with<1

[1=11©) = [] de(wds(v). m< n vertices anchm edges. Consider.

2 2 uveE(G) ) )
Mathematical properties and applications of multiplicati WZ(K"’m):uveE% )[d W a)
Zagreb indices are reported in [4], [5], [2], [3]. Mathemati " ) )
cal properties and applications of multiplicative sum Zdmgr = (M —1?) + (M — ) + .. + (M —P)
indices are reported in [6]. mn

= mn(n? —n?).

IIl. NANO-ZAGREB INDEX OF SOMEGRAPH OPERATIONS -

In this section, we define the Nano-Zagreb index of a graphProposition 3.6: Let P, be a path witm > 3 vertices. Then
also Nano-Zagreb index of the Cartesian product, comjpositi .4 Z(P,) = 6.
symmetric difference and disjunction of graphs are conghute  Proof: Let P, be a path withn > 3 vertices. Consider
Moreover, we apply some of our results to compute the Nano- 2 2/ \n
Zagreb index. AZP) = 5 [d(u)-di(v)] =3+0+0..+0x0+3=6
A topological index is a graph invariant applicable in WEE(Fn) n-2
chemistry. The Wiener index is the first topological index ]
introduced by chemist Harold Wiener [7], [8], [9], [10]. Tiee  Proposition 3.7: Let W, be a wheel withn > 4 vertices.
are some topological indices based on degrees such asThen

first and second Zagreb indices of molecular graphs. There NZ(Wh) = (n—l)((n—l)2—9).
are some topological indices [11], [7] based on degrees such ) . )
defined as respectively NZ(Wh) = Z [d?(u) — d2(v)]
uveE(Wh)
2 2 2 A2 2 A2
ueV(G) uweE(G) n—1
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) +((n—1)2-3%) +...(n—1)2-3?)

n—-1
32).

(n—1)>—

= (n-1)((n- 17~

Lemma 3.8: [16] Let G; and G, be two connected graphs,
then we have:

@
IV(G1 x Gp)| = V(G1V Gp)| = |V(G1[Ga])|
= V(GC1®Gy)| = [V(G1)|V(G2)l,
[E(G1x Gp)| = [E(G1)|[V(G2)| +V(G1)[|[E(G2)],
[E(G1+G2)| = [E(G1)| +|E(G2)| +V(G1)V(G2)],
[E(G1[G2])| = [E(G1) ||V (G2)* + |[E(G1)|V(G2)l,
[E(G1V Gp)| = [V(G1)[IV(G2)[* + [E(G1)|IV(G1)|?

—2|E(G1)||E(G2)l,
[E(G1@ Gg)| = [E(G1)||V(G2)|* + |E(G2)|V (Gy)?
—42|E(Gy1)||E(G2)].

(b) G1 x G, is connected if and only ifG; and G, are
connected.

(c) If (a,b) is a vertex ofGy x Gy, thendg, «c,((a,b)) =
do, (8) + do, (b).

(d) If (a,b) is a vertex of G1[Gg] then dg,(g,((a,b))
V(Gy)|de, (@) + da, (b).

(e) If (a,b) is a vertex ofG1 @ Gy or G; ® Gy, we have:

de, 6, ((a,b)) =V (Gy)|dg, (a) + [V (G1)|da, (b)
— 2dg, (8)dg, (b)-

de, 56, ((a,0)) =V (Gz)|de, (@) + [V(G1)|de, (b)
— g, (a)dg, (b)-

(f) If uis a vertex ofG; v G, then we have:

doa,(U) = 4 9@ (WH V(G if ueV(Gy)
e d, (u) +[V(Gy)| if ueV(Gy).

Proof: The parts (a) and (b) are consequence of defi- =
nitions and some famous results of the book of Imrich and

Klavzar [16]. For the proof of (c-f) we refer to [17]. ]
Theorem 3.9: Let G; and G, be two graphs witm; andn,
vertices,my andny, edges respectively. Then

JVZ(G]_ X Gz) =N (JVZ(GZ) + 2M3(GZ))

41y (,/VZ(Gl) + 2M3(G1)) .

Proof: From the definition of the Cartesian product of

graphs, we have:
E(Gy x Gp) = {(a,X)(b,y) : @b € E(Gy), x=y or
xy € E(Gy),a= b}
therefore we can write:

JVZ(G]_ X Gz)

17

[de, <, ((a,X))]? = [doy «, ((b,Y))]?

(ax) (by)€E(G1x G2)
[dGl (a) + dGz (X)]z -

[dg, (a) + d, (y)]?

acV(Gy) (xy)€E(Gz)
; [d, (X) + dg, (8)]% — [de, (X) + dg, (b)]?
xeV(Gy) (ab)eE(Gy)
= 3 Y (63,00 d&,(y)]+2de, (a) (do,(¥) — o, (y))
aeV(Gl xy)eE(Gz)
+ > S [dd,(a) —dg,(b)] +2dc,(X) (dg, (@) — g, (b))
xeV(Gyp) (ab)eE(Gy)

=m (/VZ(GZ) + 2M3(G2)> + (/VZ(Gl) + 2M3(Gl)> .

[ |
As an application of Theorem 3.9, we list explicit formulae
for the third Zagreb index of the rectangular gl x Ps,
Cs-nanotubeR x Cq and Cs-nanotorus?: x Ws. The formulae
follow from Theorem 3.9 by using the expressions [18],

M1 (Py) =
My (Cn) =

Example 3.10: For any graph$ x Ps, B x Cq and P x Ka,
we have the following results:

4n — 6,
4n.

1) ANZ(P xPs)=12(r+s), r,s>3,
2) NZ(R xCq) =6q,
3) NZ(P xKyg) =

Theorem 3.11: Let G; and G, be two graphs witm; and
n, vertices,m; andmy edges respectively. Then

NZ(G1[Gy]) = [2nomM3(Gy) + A Z(Gy)]
+ [2n2mpM3(Gy) + N2 A Z(Ga)].

Proof: From the definition of the compositid®; [G,] we
have:

NZ(G1[Gy])

[dg, (G, (Ui an)]z — [dg, (G| (Upvvq)]z
(uivj) (upvg) EE(G1[G2))

; [de, (Ui)n2 + dg, (v))]?
U eV(Gy) (Vjvg)€E(G2)

— [dg, (Ui)N2 + dg, (Vg)]?

+ [, (Ui)n2+dg, (v))]?
(Uup)EE(Gy) Vi€V (G2)
— [do, (up)N2 + da, (v))]?
= I’IZdGl (ui ) [dGz (Vj ) - dGz (VQ)]
UieV(Gy) (Vjvq)€E(G2)
+[dg, (vj) —dg, (vg)]
+ Nadc, (Vj)[de, (Ui) — de, (Up)]

(Uiup)EE(G1) Vi€V (Gy)
+n2[d61( i) — del(up)]
= [2n2m1M3(G2) + nlJVZ(Gz)]

+ [2nompM3(Gy) + oA Z(Gy)).
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As an application of Theorem 3.11, we present formulae fand similarly we have:
the Nano-Zagreb index of the fence graRfiR] and the closed
fence graphR [Cq.
Example 3.12:  (Cy[R]) =64, (R[Cq])=6q.
Theorem 3.13: Let G; and G, be two graphs witm; and = . [dis,) (W) — d%,) (V)] — 2 (dic,) (U) — dic (V)
n, vertices,m; andm, edges respectively. Then ueE(Gy)
NZ(G10Gp) = NZ(Gy) + 20M3(Gy) + Ny N Z(Gp) = ANZ(Gz) — 2mMs(Gy). 2
— 2mM3(Gy) + 2My (G )np 4 ngnd Finally, we can write:
+ 4nomy — 2M1(G2)n1 —n1ny — 4mpn;.

[d(G1+G2) (U) - d(G1+G2) (V)]Z
uweE(Gp)

[d(Gl+Gz) (U)]Z —[diG, 16y (V)]Z

Proof: Using the definition of the Nano-Zagreb index, we U€V(C1)VeV(G2)
have z u) + npJ® — [d(g,) (V) — n]?
ueV(Gy)veV (Gy
NZ(G10Gy) 5 ) )
=Y ey W depey W p [%ﬂ (1) 12+ 2oy () ~ iy (¥
uve(G10Gy) ueV(C1)vev(G,
Ny
—nZ—2md \% 3
Y 0 (0) ey (0]~ 2y ()~ Gy V) 1~ 2y )} @)
Wt , , = NoM1(G1) + n3ng + 4n3my — My (G) — i, — 4nfmp.
+ z z [d(Gl) (U) 4+ N3+ 2npd,) (U) — d(GZ) (v) (4)
UGV(G]_) VEV(Gz) .. . .
—1-2dg, (V)] Combining those three equations (1), (2), (4) will complete
(G2) the proof. n
= NZ(Gy) 4 2MpM3(Gy) + N4 Z(Gz) — 2n1M3(Gy) Example 3.16: A4 Z(R +Cq) = °r —ar3 — 4r’q — 402 +
+ 2M1(G1)nz 4+ N3 + 4nomy — 2M(Go)ng — gy 4cPr — 4qr + 36r — 48.407 —qr — 29— 2.
— Ampny. Theorem 3.17: Let G; and G be two graphs witm; and
n, vertices,m; andmy edges respectively. Then
[ |
Example 3.14: 4 Z(P 0Cq) = rq® —rq— 289+ 6. NZ(G1V Gy) = NZ(Gy) + 2mM3(Gy) + NZ(G2) +2mM3(Gp)
Theo_rem 3.15: Let G; and G, be tvyo graphs wittm; and + MMy (Gy) + n§n1+4n2m1 — M1 (Gp) — nfnz
n, vertices,m; andmy edges respectively. Then _4n
1Mp.
Proof: By the definition of the Nano-Zagreb index and
AN Z(G1+Ge) = AN Z(G1) — 2MMs(Gy) + A Z(Gp) from the above partition of the edge set@i v G,, we have
—2mM3(Gy) + nle(Gl) + ngnl + 4n§m1
3 2 NZ(G1V Gyp)
— M1 (Gy) — niny — 4nfmy. ) )
w = > [da;ve, (Ui, V))]” — [de;ve, (Up: Vo)l
Proof: From the definition, we know that: (Uivj)(upvg)€E(G1VGy)
_ : = [(doy (i) + n2]® — [dg, (Up) + Np)?
E(G1+ Gy) = E(G1) UE(Go) U{uv: ue V(Gy),veV(Gy)}. ( )Z( ) G, (Ui) + N2 G1(Up) + 12
Uiup) EE(Gy
So, we have: S [(dey(vy) + Ml — [do, (va) + M)
NZ(G1+Gy) = (A6, 65) (W] = [di, 46y (V)] (Vive) <E(G2) )
we(G1+Gy) + Z Z [dGl(Ui) + nz] — [dGz (Vj) + nl]
= B, oo (W~ doyien WVt ere)
E(G2) , , = Z [dG, (Ui) — dg, (up)] + 2n2[dg, (Ui) — dg, (Up)]
T Y ldiiey) (W =g +6,) (V)] (“‘”p)eE(Gli .
WweE(Gy) , , z [dG, (Vi) — dG, (V)] +2m[dg, (Vj) — dg, (Vq)]
+ Z Z [d(Gl+Gz) (u)] - [d(Gl+Gz) (V)] . (vj Vq)EE(Gz)
V1) velTey) Y S [ (w)+ B 2nadg, (u)]
It is easy to see that: UeV(Gy)vjeV(Gy)
— [d&, (vj) + n& + 2nqdg, (V]
S e WP~y e (P 96,41) % it 2l 1))
weE(Gy) =NZ(G1) + 2mM3(G1) + NZ(G3) + 2niM3(Gy)
= Z [d7,) (U) — A%, (V)] — 2n2(dig,) () — diey) (V) + oMy (Gy) + N3Ny + 4npmy — My (Gp) — ngnp — 4ngm.
uvekE(Gy)

|
= NZ(G1) — 2npM3(Gy). 1) Example 3.18: A4 Z(P vV Ky) = 4r — 36r + 34,
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IV. THE MULTIPLICATIVE NANO-ZAGREB INDEX OF SOME |
GRAPH OPERATIONS Proposition 4.8: Let W, be a wheel withn > 4 vertices.

In this section, we define the multiplicative Nano-Zagrebnen-#"*Z(W) =0. _ . _
multiplicative Nano-Zagreb index of various graph openasi 7 (W
. o (Wh)
such as corona product, Cartesian product, compositicn, d{V ) )
junction and symmetric difference. Moreover, computation™ rJ [d*(u) —d%(v)]
are conducted for some well-known graphs. Eliasi et al. [4] “"EZE W“)Z A by
considered a new multiplicative version of the first Zagrebr (3°—3%) x (3°—3%) x ... x (3= 3°)
index as x (N=1)2-3%) x (N-1)2-3) x..x ((n—-1)?-3?) =0.
1(G)= [ [de(u)+de(v))-

uveE(G) . =
Recently many other multiplicative indices and coindicés o Ttheorem 4.9 dLet Gé andG; be 'Eyvolgr?r?]hs wittny andn;
graphs were studied, for example, in [19], [20], [21]. Insthj VET!CES:M1 andm; edges respectively. Then

paper, we initiate a study of the multiplicative Nano-Zdgre N*Z(Gy % Gy)
indices of graphs. We define the multiplicative Nano-Zagreb V*Z(G A M (G,) ] ™M™
index of a graphG as follows < [nl ( 22:12 MMs(G2)
1
AZG)= [] [d&(u)—dgv). 24 *Z(Gy) +4mpM3(Gy) 1 ™=™
WeEE(G) x oy .

We begin this section with standard inequality as follows:
Lemma 4.1 (Arithmetic Mean-Geometric Mean Inequality):
[22] Let x1,Xo,...,Xn be non-negative numbers. Then

Xp+Xo+ ...+ Xn

Proof: By the definition of the multiplicative Nano-
Zagreb index and from the above partition of the edge set
in G; x Gy, we have

n = X1X2... Xn (5) e/V*Z(Gl > GZ)
holds with equality if and only if all they’s are equal. = [ (Ao, xG, (Ui, V))]? = [do, <6, (Up, V)]
Proposition 4.2: Let G be a regular graph. Then™*Z(G) = (Uivj)(Upvg) €E(G1 %X G2)
0. - ) This actually can be written as
Therefore, by Proposition 4.2 we have the following proposi
tions. = ] [T [doy(u) +de,(vj)]? — [doy () +da, (ve))?
Proposition 4.3; Let C, be a cycle wittn > 3 vertices. Then  ui€V(Gy) (vjvq)<E(G2)

AN*Z(Ch) =0. X rJ

Proposition 4.4: Let K, be a complete graph withvertices. vjeV (Gy) (Uiup)€E(Gy)
Then 4*Z(Kn) = 0.

Proposition 4.5: Let K n be a complete bipartite graph with
2n vertices. Then/*Z(Knn) =0. <
Now, we compute the Multiplicative Nano-Zagreb index for a =
complete bipartite graph.

Proposition 4.6: Let K, be a complete bipartite graph with _ 142 ¢ 2 .
m+ n vertices. Thent*Z(Knm) = [ME —nZ™. g, (L) 0, (Vo) 20 (U)o, (Vo)

Proof: Let K,m be a complete bipartite graph with+n
vertices anchm edges. Consider.

N Zam) =[] [d7(u) = d?(V)] ) ) 2
uveE (Knm) - [del(up) + dGz (Vj) + 2dg, (up)da, (v )]:|
= (M —n?) x ... x (M —n?)(m? —n?)

[dGl(ui) + dGz (VJ )]2 - [dGl(uP) + dGz(Vj )]2
However, from the inequality (5), we get

[ 162, () + 62, (V) + 20 ()de, (V)]
UieV(Gy) (Vjvq)€E(G2)
] ninmy

X l [d&, () +dg, (Vj) + 26, (Ui)dg, (Vj)]
vjeV(Gy) (Ujup)€E(Gy)

s -| 02, () — 0B, o)
2 ueV(Gy) (vjvg)€E(Gy)
= [m? — ™. 1) (viVa)€E(G2 .
.2 W)t -~ deve)]
Proposition 4.7: Let B, be a path withn > 3 vertices. Then
AZ(Py) = 0. X [d&, (ui) — d&, (up)]
Proof: Let P, be a path withn > 3 vertices. Consider v, ¥7Gy) (uiupfEE(Gy)
NFZ(P) = d?(u) — d? n2me
(Pn) uvelg!Pn)[ (u) (V)] + 2dGZ(Vj)[d(31(Ui) _ del(Up)]}

N

=3x0x0..x0x0x3=0. [nle/V*Z(Gz)+4m1M3(G2)]nlmz
~——_— ——

n—2 nime
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. [ "Z(Gy) + 4moMs(Gy) | ™
N2y '

Theorem 4.10: Let G; and G, be two graphs witm; and

n, vertices,m; andmy edges respectively. Then

N*Z(G10Gy)

< |:JV*Z(G1) + 2n;M3(Gy) ] M
m

y {nlﬂ*Z(GZ) +2n1|\/|3((32)} e
nimy

o |:n2M1(G1) + ngnl + 4n§m1 - nlMl(Gz) — NNy — 4m2n1:| mn

ning

Proof: By the definition of the multiplicative Nano-
Zagreb index and from the above partition of the edge set _

in G10Gy, we have

N*Z(G10Gy)

= [ [de;06, (Ui, V)]? = [dey06, (Up, Va))?
(uivj)(upvg)€E(G10Gy)

= [1 [doy(u)+ng®~[ds,(up) +ngl?
(uiup)€E(Gy)

x M lde(vi)+ 1~ [dey (Vo) + 17
UeV(Gy) (Vqu)GE(Gz)

x U |_J [de, (Ui) + Ng)? — [dg, (vj) + 1)
eV Gl) Vj ev Gz)

= 1 [d&(u)—dE (up)]+2nz[d, (u) — da, (up)]
(Uitp)E(Gy)

X U [déz (VJ ) - déz (VQ)]
UieV(Gy) (vjvg)€E(G2)
+2[dg, (Vj) — da, (Vg)]
X [T [d&,(u)+ns-+2nxdg, (i) — dg,(v))
UieV(Gy)vjeV(Gy)
-1- ZdGz(Vj )]

However, from the inequality (5), we get

< |:JV*Z(G1) + 2n2M3(Gl) ] m

m
« |:n1</V*Z(G2) + 2n1M3(Gz):| mm

nimp

y [nle(Gl) + ngnl + 4n§m1 — nlMl(Gz) —nNinp — 4m2n1:| M2

ning

Theorem 4.11: Let G; and G, be two graphs witm; and

n, vertices,m; andmy edges respectively. Then

e/V*Z(Gl[Gz]) < |:n1JV*Z(G2) + 4n2m1M3(G2)} MM

nimy
y ngJV*Z(Gl) +4n2sz3(G2) mln%
mny '

Proof: By the definition of the multiplicative Nano-
Zagreb index and from the above partition of the edge set
in G1[Gy], we have

NZ(G1[Gy])

= (Ao, 6,1 (Ui, V))]% — [da, (6, (Up, Vg)]?
(uivj) (upvg)€E(G1[Gy])

= [T [do,(ui)nz+dg,(v)))?
uieV(Gy) (Vjvg)€E(G2)

~ [d, (Ui)n2 + do, (V) ?

< M T [{(del(unnwdez(vn]z
(Uup)€E(Gy) vjeV(G2)

— [de, (Up)n2 +da, (VJ)]Z]

U [déz (VJ ) - déz (VQ)]
U eV(Gy) (vVjvg)€E(G2)

+ 2npdg, (Ui)[de, (Vj) — da, (V)]

y {n%[dél(uo — 2, (up)

(Uiup)€E(Gy) vj GQGZ)
n2
1 2ny0c, (v de, (1) — del<up>1] .

However, from the inequality (5), we get
< |:n1JV*Z(Gz) + 4n2m1M3(G2) :| mm
niny
. [ngw*Z(Gl) + 4n;mpM3(Gy) } "‘1”5'
MmNy

[ |
Theorem 4.12: Let G; and G, be two graphs witm; and
n, vertices,m; andmy edges respectively. Then

N*Z(G1®Gy) = 0.

Proof: By the definition of the multiplicative Nano-
Zagreb index and from the above partition of the edge set
in G1 ® Gy, we have

e/V*Z(Gl & Gz)
= [ [, 6, (Ui, V))]? — [doye6, (Up, Vo))

(uivj)(Uupvg) EE(C1®G2)

[Mmda, (Vj) + n2dg, (Ui) — da, (Ui)da, (vj)]?

(uiup)€E(Gy) v G\l/_JGz)

" — [Mdg, (Vj) + Nadg, (Up) — dg, (Up)da, (Vj)]?

x [Mda, (Vj) + N2dg, (i) — dg, (U)dg, (vj)]?

U eV(Gy)vj e\ll_JGz)
— [Midg, (V}) + N2dg, (Ui) — da, (Ui)da, (Vj)]?

“JL ’VqQE(GZ) [n2dg, (vi) +n3dg, (u) —d&, (u)dg, (v))
+ 2n1adg, (Ui)da, (Vj) — 2n2d3, (ui)da, (V))

— 2mdg, (u)dg, (v;)]

— [n%d8, (vj) +n3dg, (up) — d&, (up)dg, (vj)

+2n1Nadg, (Up)d, (V) — 2n20E, (Up)da, (V)
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—2n1dGl(up)dé2(vj)] Proof: By the definition of the multiplicative Nano-
- - ) ) Zagreb index and from the above partition of the edge set
X |_| n7dg, (vj) +nsdg, (ui) —dg, (u)dg, (vj) in G1 ® Gy, we have
(Uiup)€E(G1) vjeV(Gy) JV*Z(G 56 )

+2mnpdg, (U)d, (V) — 2n2d3 (U)do, (v)) 1o , ,
—2nd (u-)d2 (V)] = [dGler(uivvj)] _[dGl'EBGz(upqu)]

176, FRG, ) (Uiv}) (upVe) EE(G13Gp)
— [n{dg, (vj) + n3d&, () — d, (ui)dg, (vi) - [(n2d, (W) + N0, (v;)
+ 2n12dg, (Ui)da, (Vj) — 2n2d3, (Ui)da, (V)) Ui eV (Gy) (vjvq)€E(Gp)

2

— 2mdg, (W)d3, (vj)] = 0. — 2dg, (Ui)dg, (vj)]

m — [nedo, (U) +Mde, (Vo) — 2de, (u))de, (vg)]®
Theorem 4.13: Let G; and G, be two graphs witm; and

: . [n2dg, (Ui) 4+ Mde, (V)
np vertices,m; andmp edges respectively. Then 1 €u62> [ 1 2
N UGV Gy — 2dg, (u)de, (v))]
< JV*Z(Gl) + 2n2M3(Gl) M 17}
= my [n2da, (Up) + N1da, (V;) — 2da, (Up)da, (V)]
*Z(G 2nM3(G,) 1™
x V/ (Ca) + 2l 2>] < 1 1 [nede, (W) +mde,(v)) — 20c, (U)de,(v))]*
my UiV (Gy)vjeV(Gy)

3 3 nin2

y {nle(Gl) + n2n1+4nzm;—nnlMl(Gz) —n3np — 4nymy — [nadle (u) + mads, (v;) — 2d(31(Ui)dGZ(Vj)]2
_ o . = M [, (u)+nd,(v))

Proof: By the definition of the multiplicative Nano- U eV(Gy) (vjvg)€E(Gy)

Zagreb index and from the above partition of the edge sgt4d2 (u)d2 (vi)

in G1V Gy, we have G/ FG2 Y

+ 2n1adg, (Ui)da, (Vj) — 4n2dg, (ui)da, (V)

N*Z(G1V Gy) , , — 4nyd, (ui)dZ, (v))]

= (uivj)(upvql)_lgE(leGz)[del\/GZ(Ui7Vj )] = [dg,ve, (Up, V)] _ [n%dél(ui) + nfdéz (Vg) —4dél(ui)dé2 (Vq)

= 1 [(de(u)+ng]®— [de, (up) +ngl? +2n1nzdg, (U))da, (Va) — 4n2dg, (u))da, (Vo)
(UiUp)€E(Gy) — 4mdg, (u)dg, (Vq)]

[(do, (V) +na]? — [do, (vg) +1a)?
(Vjva)€E(G2)

< T[] [dou(u)+n2) - [dey(vp) +na? I e
Gy \Yi 2] — UG, \Vj 1 2 /iNA2 )
UeV(Gy) v eV (Gy) ' ’ — 4dg, (ui)dg, (vj)

= 1 [d&(w)—dE (up)]+2m[dg, (u) —dg, (up)] T 2ninpdg, (U)da, (Vj) — 4nzdg, (Ui)de, (V)

[5G, (u) + nidg, (v;)

(uiup)€E(Gy) — 4mdg, (u)dg, (vj)]
vl )[déz (v}) — 0§, (Vg)] + 2M[d, (vj) — dg, (Vg)] — [M3d3, (up) +13d2, (v;) — 4dZ (up)dZ, (vj)
jVa 2 2
+ 2mnodg, (Up)dg, (Vi) — 4nxdg, (Up)da, (Vi
% |—J |—J [dél(ui)‘f'n%‘f'znszl(ui)] 1112 Gl( P) Gz( J)n 2 Gl( P) Gz( J)
uieVv Gl) Vj ev Gz) - 4n1dG1(up)dé2 (VJ)]
—[0&,(vj) + n§ + 2nadg, (V)
2l x [ [M30d, (u)+nddd, (v;) - 4dg, (u)dg,(v))
However, from the inequality (5), we get ueV(Gy)vjeV(Gy)
_ [W*Z(Gl) + 2npM3(Gy) ] ™ +2mnade, (U)de, (V) — 4n2dd, (ui)da, (v))
< m " —4nydg, (Ui )dé2 (vj )]
y V 2(Ga) + 2n1M3<Gz>] — [, () + nidg, (v;) — 4dg, (u)d3, (v;)
my 2
+ 2ninodg, (Ui)dg, (Vi) — 4nod&. (U)de, (Vi
NoM1(Gy) + n3nyg + 4npmy — ngMs(Gp) — ndnp — 4mgmp ] ™M™ thode; IZ (%) 20, (U)o (V)
X niny . —4I’11d(3.l(Ui)dG2 (Vj)] =0.

|
Two graphs arégsomorphic if there exists a vertex labeling
that preserves adjacency, they can be viewed as different
geometrical representations of the same abstract graptedefi
NZ(G1®Gy) =0. as a set of elements (verticey },i € 1,2,...,n and a set of

[ |
Theorem 4.14: Let G; and G, be two graphs witm; and
n, vertices,m; and my edges respectively. Then
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elements (edges) that are unordered duplets from the formjr M. Eliasi, A. Iranmanesh, and 1. Gutman, “Multiplicagiwersions of first

set{uvj},i¢jel2,.

LN

Example 4.15; As an application in Chemistry, shows that [5]
in all alkanes om vertices, we computed the value of'Z
and.#*Z depends on the respected isomer. For instance, W&
computed these values for octane isomers as reported ie Tabl
I. All isomers of octane are depicted in Figure 1.

TABLE |
NZ AND A*Z OF THE OCTANE ISOMERS
Molecule NZ N*Z
Octane 6 0
2-methyl-heptane 42 0
3-methyl-heptane 40 0
4-methyl-heptane 24 0
3-ethyl-hexane 32 0
2,2-dimethyl-hexane 68 759375
2,3-dimethyl-hexane 24 0
2,4-dimethyl-hexane 60 0
2,5-dimethyl-hexane 78 12960000
3,3-dimethyl-hexane 24 0
3,4-dimethyl-hexane 60 0
2-methyl-3-ethyl-pentane 68 3628800
3-methyl-3-ethyl-pentane 32 0
2,2,3-trimethyl-pentane 24 0
2,2,4-trimethyl-pentane 60 699840
2,3,3-trimethyl-pentane 42 19200
2,3,4-trimethyl-pentane 90 0
2,2,3,3-tetramethylbutane 32 0
2,5-dimethyl 2,3,4, trimethyl-
Octan hexane pentane
: 2,2,3, trimethyl
2-methyl heptane 3’4'%’;‘:;2)" pentane Y
3-methyl heptane 2,2-dimethyl 2,2,4 trimethyl
hexane pentane
3,3-dimethyl 2,3,3 trimethyl
4-methyl heptane hexane pentane
2,3-dimethyl f £
hexane 3-ethyl hexane 3-thyl-3-methyl
pentane
24-dimethyl 2,23 3-tetra 3-ethyl-2-methyl
hexane methyl-butane

Fig. 1. All octane isomers.
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